# .css-1lrpez4{margin-top:unset;}.css-1lrpez4:hover > span,.css-1lrpez4:focus-within > span{opacity:1;-webkit-transform:none;-ms-transform:none;transform:none;-webkit-transform-duration:0.1s;-ms-transform-duration:0.1s;transform-duration:0.1s;}expand: linear.css-14vda7h{font-size:15px;margin-inline-start:0.5rem;opacity:0;position:absolute;-webkit-transform:translateX(-4px);-ms-transform:translateX(-4px);transform:translateX(-4px);-webkit-transition:opacity 0.2s ease-out 0s,-webkit-transform 0.2s ease-out 0s;-webkit-transition:opacity 0.2s ease-out 0s,transform 0.2s ease-out 0s;transition:opacity 0.2s ease-out 0s,transform 0.2s ease-out 0s;}

 sample Q from each layer teach-learn questions layer 1 2 3 4 5 6 7 8 9 10 11 12 practise-learn worksheets print hints d/s 2pp d/s 2pp d/s 2pp d/s 2pp d/s 2pp d/s 2pp d/s 2pp d/s 2pp d/s 2pp d/s 2pp d/s 2pp

### NC information

A1 use and interpret algebraic manipulation, including:

• ab in place of a × b
• 3y in place of y+y+y and 3×y
• a2 in place of a×a, a3 in place of a×a×a, a2b in place of a×a×b
• a/b in place of a÷b
• coefficients written as fractions rather than as decimals
• brackets

A4 simplify and manipulate algebraic expressions (including those involving surds and algebraic fractions) by:

• collecting like terms
• multiplying a single term over a bracket
• taking out common factors
• expanding products of two or more binomials
• factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares;
• factorising quadratic expressions of the form ax2 +bx+c
• simplifying expressions involving sums, products and powers, including the laws of indices