Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

There are 3 signs of working memory overload which we can witness as they happen - these can happen to any learners - even those with average or above average working memory capacities:

  • muddling methods,

  • missing steps and

  • giving up.

Once we recognise each as a possible working memory overload response, then we are best placed to minimise it.

...

  • working memory overload - as it happens: where the learner is trying to calculate, but gets stuck, so uses an informal method, but gets stuck and so forth - so what looks from the outside as day dreaming or fake thinking may actually be overwhelmed thinking,;

  • shame avoidance - the learner would rather give up before they begin and console themselves that they “didn’t try”, “you didn’t teach us” or “this won’t be useful in my adult life” rather than try and fail. This behaviour can be seen as a way of dealing with cumulative failure. If we make learning maths too stressful, then our learners will be primed for forgetting the uncomfortable feelings that the lesson induced, as well as any maths they may have learned during that lesson. See also maths anxiety.

...

Expand
titleSimplistic summary of reconsolidation: the process our brains may be prompted to do after retrieval practice

Consolidation is the process whereby a brain state in active or working memory is stored in long-term memory. This process modifies synapses on the dendrites of neurones. After retrieval of the memory, a similar process, called reconsolidation occurs whereby the old memory is altered and replaced by the new memory.

Multiple retrievals and reconsolidations may be needed to build an accurate chunk. It seems we are not prompted to reconsolidate

  • if we can easily recall our learning - hence overlearning is far less effective than retrieval practice,

  • by activities which induce uncomfortable feelings - what we might have learned, is not laid down in long term memory - perhaps to preserve our self esteem.

Both consolidation and reconsolidation happen during sleep, so we can’t possibly know what a learner has learned during a lesson. We must wait for at least one sleep , to find out what has become learning and what has not.

It seems that if recall is too easy , reconsolidation won’t happen at all or make a perceivable change in the duration of the recall-ability from long term memory. This fits with Bjork’s desirable difficulties.

It seems that by its very definition reconsolidation can’t happen at the end of the lesson where the skill is taught, because the learner hasn’t had a sleep so hasn’t even consolidated the learning.

...

Expand
titletimely practice offers feedback the next maths lesson - which is close to ideal

I wish I could say that is why timely practice expects the teacher to assess assignments between one lesson and the next - and only then give feedback, but these fundamental decisions were made, so that feedback is delayed by at least one sleep. However the main reasons for this fundamental decision are:

  • to reduce the reliance of need for learners on to having one computing device per learner and the need for reliable access to wifi in every lesson,

  • to get learners to write by hand their workings and diagrams, just as they must in a test and quite possibly because it’s (which may also be more effective at embedding learning).

There are number of general problems that feedback may need needs to overcome.

  1. The learner has built an incomplete chunk in long-term memory - despite timely practice layers being small and therefore easier to learn, sometimes the learner will need more support to build a chunk - the teacher, via feedback-dialogue, should work with the learner to find what is missing and help the learner fix it. See also (5) fading scaffolding, for more about this. We recommend assessing rather than marking of assignments, to assist with this. With marking, the teacher might write a note to the learner, showing the missing bits, but with feedback-dialogue, we help the learner add the missing bits to the chunk, ideally via questioning rather than telling.

  2. The learner has not replaced/adapted an incorrect chunk built some time ago, with a new/adapted chunk in long-term memory. This is different from 1. in that the chunk to do the old incorrect method hasn’t been overwritten, despite perhaps a new chunk being built in the lesson. So here we are working on changing the trigger i.e. the learner choosing the new correct chunk, rather than the old incorrect one. The best way to do this, is to offer a reason why the old incorrect one is incorrect, that chimes with the learner’s understanding.

  3. The learner is still reliant on some of the “unacknowledged scaffolding'' of the lesson e.g. placement of workings out on the page or use of a diagram etc. See (5) fading scaffolding for more about this.

  4. The learner has misread the question or poorly applied their numeracy skills when answering the question. This is likely to be due to working memory overload - all learners, even the most able A level maths learners experience it. As they are learning and working through something new and hard, they are unable to accurately apply skills which are usually easy for them. I sometimes describe this effect to students as their brain isn’t very good at easy thinking and hard thinking at the same time. The best we can offer learners as they practise, is that they can look through their workings out for accuracy periodically. Sometimes I suggest they write “check for accuracy” on the answer line, as an aide memoire, for when they think they have solved the problem. We need to encourage learners to realise that making “silly mistakes” is often a sign of hard learning going on, not a sign that “they can’t even do the easy maths”.

...

The difference between being able to answer questions in a lesson, where all the questions require the same, recently learned skill, and being able to answer the interleaved retrieval practice questions within the learners assignment is a little like the difference between following being able to follow a recipe and being a creative chef. As teachers we are often unaware of how much scaffolding is in the classroom when we are teaching a topic e.g. notes on whiteboard, vocabulary fresh in learner’s minds etc. Additionally, Almost all the practice questions that learners will do in the lesson where teaching occurs, learners don’t need to use the triggers for their chunks in long-term memory, they just need to remember the will be on the topic of the lesson. Almost all the practice questions , (except of course those in their timely practice assignment) that learners will do in the lesson, will be on the topic . In the lesson where teaching occurs, learners don’t need to use the triggers for their chunks in long-term memory, they just need to remember their learning of the lesson.

Once learners begin doing retrieval practice questions in their timely practice assignment, they have to

...

  • get the learner to join 2 or more chunks together e.g. to write 7% as a decimal, we are trying to get the learner to recall and join the chunk of how to write 7% as a fraction and the chunk that knows that the fraction 7/100 also means 7 ÷ 100 and the chunk that knows how to divide a number (without a decimal point) by 100.

  • to add something new on to the end of an existing chunk e.g. to add on to the chunk for finding the median of an odd number of data items, the extra steps to find the median of an even number of data items.

We have to accept that selecting best learned later and hoping that “in class teaching and practice” in the next spiral of the curriculum, is unlikely to solve the problem: the learner could answer practice questions in the lesson they were taught, but can’t recall everything enough the next lesson. As it It is clear that the problem is not being unable to apply the process, instead the problem is being unable to recall to recall the process.

...

given - sign layers 3 and 4

given - sign layers 9 and 10

At the moment, September 2023, the app can’t automatically swap between scaffold pair layers - but we plan to do this in the future.

Not all layers, which have a scaffolded layer planned, are written yet. This is the main reason why some topics e.g. frequency table has gaps between some layers.

...

was given. I don’t think many teachers would count this as problem solving, most would calssify classify this as merely requiring learners to use a number of skills to perform a standard problem.

...