.css-1lrpez4{margin-top:unset;}.css-1lrpez4:hover > span,.css-1lrpez4:focus-within > span{opacity:1;-webkit-transform:none;-ms-transform:none;transform:none;-webkit-transform-duration:0.1s;-ms-transform-duration:0.1s;transform-duration:0.1s;}probability: tree.css-14vda7h{font-size:15px;margin-inline-start:0.5rem;opacity:0;position:absolute;-webkit-transform:translateX(-4px);-ms-transform:translateX(-4px);transform:translateX(-4px);-webkit-transition:opacity 0.2s ease-out 0s,-webkit-transform 0.2s ease-out 0s;-webkit-transition:opacity 0.2s ease-out 0s,transform 0.2s ease-out 0s;transition:opacity 0.2s ease-out 0s,transform 0.2s ease-out 0s;}

 sample Q from each layer teach-learn questions layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 practise-learn worksheets print hints d/s 2pp d/s 1pp d/s 1pp d/s 1pp d/s 1pp

NC information

National curriculum code and descriptions (partially) covered by the layers.

P3Â relate relative expected frequencies to theoretical probability, using appropriate language and the 0-1 probability scale

P7Â construct theoretical possibility spaces for single and combined experiments with equally likely outcomes and use these to calculate theoretical probabilities

P8 calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions

N5Â apply systematic listing strategiesÂ including use of the product rule for counting (i.e. if there areÂ mÂ ways of doing one task and for each of these, there areÂ nÂ ways of doing another task, then the total number of ways the two tasks can be done isÂ mÂ Ã—Â nÂ ways)

• Page:
• Page: