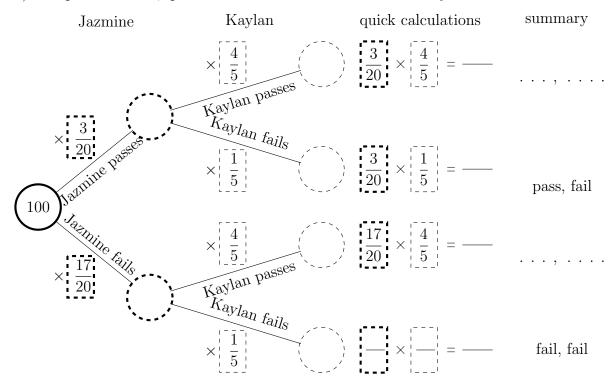

1. The probability Inaya wears a black t-shirt is $\frac{4}{7}$


When Inaya wears a black t-shirt the probability she wears black trainers is $\frac{2}{3}$

When Inaya doesn't wear a black t-shirt the probability she wears black trainers is $\frac{1}{3}$

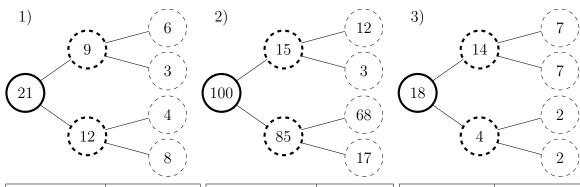
a) Complete the tree, quick calculations and outcome summary.

- b) Work out the probability of Inaya wearing a black t-shirt without black trainers
- 2. a) Complete the tree, quick calculations and outcome summary.

b) Work out the probability of both Jazmine and Kaylan failing the swimming test.

.

Turn over for more questions and answers


3. Lara will throw a biased coin and a fair coin.

The probability of getting a head with the biased coin is $\frac{7}{9}$

(a) Complete the tree, quick calculations and outcome summary.

(b) Work out the probability of Lara getting tails on both coins. . . .

Answers

1) quick calc	summary	2) quick calc	summary	quick calc	summary
$=\frac{6}{21}$		$=\frac{12}{100}$		$=\frac{7}{18}$	head, head
$=\frac{3}{21}$	black, other	$=\frac{3}{100}$		$=\frac{2}{18}$	
$\frac{4}{7} \times \frac{1}{3} = \frac{4}{21}$		$=\frac{68}{100}$	fail, pass	$\boxed{\frac{2}{9} \times \frac{1}{2} = \frac{2}{18}}$	
$=\frac{8}{21}$	other, other	$\boxed{\frac{17}{20} \times \frac{1}{5} = \frac{17}{100}}$	fail, fail	$=\frac{2}{18}$	tail, tail
9 1		17		າ 1	

1b) $\frac{3}{21}$ or $\frac{1}{7}$

2b) $\frac{17}{10}$

3b) $\frac{2}{18}$ or $\frac{1}{9}$