1. Here is a diagram of two straight lines AB and PQ which meet at M

- (i) Complete:
 - $\blacklozenge = \dots^{\circ}$ because angles on a straight line add up to 180°
 - $\circ = \dots \circ$ can have 2 possible reasons
 - for ♠ angles on a straight line add up to 180°, then for ♦ angles on a straight line add up to 180°
 - 2. the quick way: vertically opposite angles are equal

You may use these diagrams to help calculate \blacklozenge and \diamondsuit

Here are two straight lines which cross.

(ii) Complete:

$\heartsuit = \dots^{\circ}$ because	

2. Here is a diagram of two straight lines AB and PQ which meet at M

(i) Complete: $\heartsuit = \dots$ ° because angles on a straight line add up to 180° \blacksquare = ° can have 2 possible reasons

1. for \heartsuit angles on a straight line add up to 180° , then for \blacksquare angles on a straight line add up to 180°

2. the quick way: vertically opposite angles are equal

You may use these diagrams to help calculate \heartsuit and \blacksquare

Н	Т	0
1	8	0

180		
120	\heartsuit	
	\heartsuit	

Here are two straight lines which cross.

(ii) Complete:

 $\circledast = \dots^{\circ}$ because

3. Here is a diagram of two straight lines AB and PQ which meet at M

(i) Complete:

- $\clubsuit = \dots^{\circ}$ because angles on a straight line add up to 180° $\blacktriangle = \dots^{\circ}$ can have 2 possible reasons
- for ♣ angles on a straight line add up to 180°, then for ▲ angles on a straight line add up to 180°
- 2. the quick way: vertically opposite angles are equal

You may use these diagrams to help calculate \blacktriangle and \clubsuit

 \odot

 180°

4. Here is a diagram of two straight lines AB and PQ which meet at M

(i) Complete:

- $\blacklozenge = \dots$ ° because angles on a straight line add up to
- $\star = \dots^{\circ}$ can have 2 possible reasons
- 1. for \blacklozenge angles on a straight line add up to 180° , then for \bigstar angles on a straight line add up to 180°
- 2. the quick way: vertically opposite angles are equal

You may use these diagrams to help calculate \blacklozenge and \bigstar

Answers

- 1. (i) $\blacklozenge = 110, \blacklozenge = 70$ (ii) $\heartsuit = 22$ because vertically opposite angles are equal OR 158 and angles on a straight line add up to 180° twice
- 2. (i) $\heartsuit = 60$, $\blacksquare = 120$ (ii) $\circledast = 26$ because vertically opposite angles are equal OR 154 and angles on a straight line add up to 180° twice
- 3. (i) ♣ = 150, ▲ = 30 (ii) = 93 because vertically opposite angles are equal OR 87 and angles on a straight line add up to 180° twice
- 4. (i) $\blacklozenge = 135$, $\bigstar = 45$ (ii) $\circledast = 83$ because vertically opposite angles are equal OR 97 and angles on a straight line add up to 180° twice