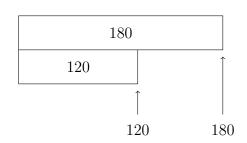

1. Here is a diagram of two straight lines AB and PQ which meet at M

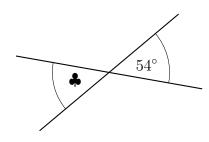
(i) Complete:


 $\blacktriangle = \dots$ because angles on a straight line add up to 180°

 $\blacksquare = \dots$ ° can have 2 possible reasons

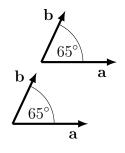
1. for ▲ angles on a straight line add up to 180°, then for ■ angles on a straight line add up to 180°

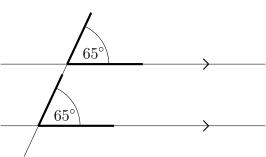
2. the quick way: vertically opposite angles are equal


You may use these diagrams to help calculate \blacktriangle and \blacksquare

	Н	Τ	Ο
	1	8	0
-			

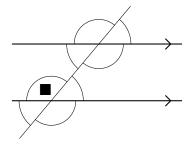
180		
120	A	
	A	

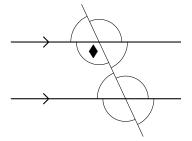

Here are two straight lines which cross.



(ii) Complete:

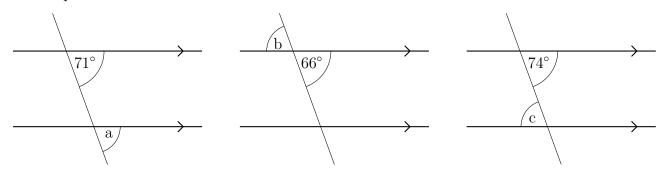
♣ =° because


2. The angle between the vectors ${\bf a}$ and ${\bf b}$ is 65°



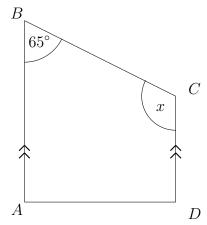
This pattern of equal angles between a line and parallel lines is called corresponding.

Draw the correct symbol on the angles corresponding to \blacksquare , \blacklozenge and \blacktriangle



3. not. written yet

4. Complete


FYI You may use: alternate, corresponding or vertically opposite to complete the reasons angle $a=\dots^\circ$ because are equal angle $b=\dots^\circ$ because are equal

5. not written yet

6. not. written yet

7. not. written yet

8.

(i) Work out the size of the angle marked x.

(ii) Give a reason for your answer