- 1. "The angle at the centre is twice the angle at the circumference from the same arc" is a rule to find missing angles in circles.
 - (i) Complete the missing angles \blacktriangle , \blacksquare , \blacklozenge and \blacklozenge

"Angles at the circumference from the same arc are"

(iii) Complete: The rule "Angle in a semi-circle = "" saves having to write
"The angle at the centre = 180° because the diameter is a straight line" and
"The angle at the centre is twice the angle at the circumference from the same arc"

- 2. "The angle at the centre is twice the angle at the circumference from the same arc" is a rule to find missing angles in circles.
 - (i) Complete the missing angles $\blacktriangle,\,\blacksquare,\,\blacklozenge$ and \blacklozenge

"Angles at the circumference from the same arc are"

(iii) Complete: The rule "Angle in a semi-circle = "" saves having to write
"The angle at the centre = 180° because the diameter is a straight line" and
"The angle at the centre is twice the angle at the circumference from the same arc"

- 3. "The angle at the centre is twice the angle at the circumference from the same arc" is a rule to find missing angles in circles.
 - (i) Complete the missing angles $\blacktriangle,\,\blacksquare,\,\blacklozenge$ and \blacklozenge

"Angles at the circumference from the same arc are"

(iii) Complete: The rule "Angle in a semi-circle $= 90^{\circ}$ " saves having to write

"The angle at the centre is twice the angle at the circumference from the same arc"

- 4. "The angle at the centre is twice the angle at the circumference from the same arc" is a rule to find missing angles in circles.
 - (i) Complete the missing angles $\blacktriangle,\,\blacksquare,\,\blacklozenge$ and \blacklozenge

"Angles at the circumference from the same arc are"

(iii) Complete: The rule "Angle in a semi-circle = "" saves having to write
"The angle at the centre = 180° because the diameter is a straight line" and
"The angle at the centre is twice the angle at the circumference from the same arc"

Answers

- 1. (i) $\blacktriangle = 100, \blacksquare = \blacklozenge = 50, \blacklozenge = 90$ (ii) equal (iii) 90
- 2. (i) $\blacktriangle=96,$ $\blacksquare=\blacklozenge=48,$ $\blacklozenge=90$ (ii) equal (iii) 90
- 3. (i) $\blacktriangle = 114$, $\blacksquare = \blacklozenge = 57$ (ii) equal (iii) 180
- 4. (i) $\blacktriangle = 136, \blacksquare = \blacklozenge = 68, \blacklozenge = 90$ (ii) equal (iii) 90