1. Luke is y years old.

Luke's grandma is 10 times as old as Luke.
(a) Write down an expression, in terms of y, for the age of Luke's grandma.
(a) $\ldots \ldots \ldots \ldots$

Luke's mum is 30 years younger than Luke's grandma.
(b) Write down an expression, in terms of y, for the age of Luke's mum.
(b)
2. Liz buys 4 packets of tent pegs.

There are p pegs in a packet.
(a) Write down an expression, in terms of p, for the total number of tent pegs Liz buys.
(a) $\ldots \ldots \ldots \ldots$.

Liz has 7 tent pegs already.
(b) Write down an expression, in terms of p, for the number of tent pegs Liz has altogether.
(b)
writeAlgebra (7) Answers 1a) 10y 1b) $10 \mathrm{y}-30$ 2a) 5 n 2b) $5 \mathrm{n}+7$ 3a) 4 p 3 b$) 4 \mathrm{p}+7$

1. Luke is y years old.

Luke's grandma is 10 times as old as Luke.
(a) Write down an expression, in terms of y, for the age of Luke's grandma.
(a) \qquad
Luke's mum is 30 years younger than Luke's grandma.
(b) Write down an expression, in terms of y, for the age of Luke's mum.
(b) $\ldots \ldots \ldots \ldots$.
2. Liz buys 4 packets of tent pegs.

There are p pegs in a packet.
(a) Write down an expression, in terms of p, for the total number of tent pegs Liz buys.
(a) $\ldots \ldots \ldots \ldots$.

Liz has 7 tent pegs already.
(b) Write down an expression, in terms of p, for the number of tent pegs Liz has altogether.
(b) \qquad
3. Kacper has written 3 numbers on a piece of paper.

He says "The first number is n "
He says "The second number is 5 times the first number"
(a) Write down an expression, in terms of n, for Kacper's second number.
(a) $\ldots \ldots \ldots \ldots$.

He says "The third number is 7 more than the second number"
(b) Write down an expression, in terms of n, for Kacper's third number.
(b)
3. Kacper has written 3 numbers on a piece of paper.

He says "The first number is n "
He says "The second number is 5 times the first number"
(a) Write down an expression, in terms of n, for Kacper's second number.
(a) $\ldots \ldots \ldots \ldots$

He says "The third number is 7 more than the second number"
(b) Write down an expression, in terms of n, for Kacper's third number.
(b) $\ldots \ldots \ldots \ldots \cdot$

