1. Here is a regular polygon, a proportional triangle and an incomplete prime factor tree.
(i) Complete the labels of the exterior angles, e, and an interior angle, i, of the polygon.

360
(ii) Complete: number of sides, $\mathrm{n}=$
exterior angle, $\mathrm{e}=$ \qquad .
interior angle, $\mathrm{i}=$ \qquad -
\{You may use the proportional triangle and prime factor tree\}
2. Here is a regular polygon, a proportional triangle and an incomplete prime factor tree.
(i) Complete the labels of the exterior angles, e, and an interior angle, i, of the polygon.

(ii) Complete: number of sides, $\mathrm{n}=$
exterior angle, $\mathrm{e}=\ldots . .^{\circ}$
interior angle, $\mathrm{i}=$ \qquad
\{You may use the proportional triangle and prime factor tree\}
3. Here is a regular polygon, a proportional triangle and an incomplete prime factor tree.
(i) Complete the labels of the exterior angles, e, and an interior angle, i, of the polygon.

(ii) Complete: number of sides, $\mathrm{n}=$ \qquad
exterior angle, $\mathrm{e}=\ldots . .^{\circ}$
interior angle, $\mathrm{i}=$ \qquad .
\{You may use the proportional triangle and prime factor tree\}
4. Here is a regular polygon, a proportional triangle and an incomplete prime factor tree.
(i) Complete the labels of the exterior angles, e, and an interior angle, i, of the polygon.

360
(ii) Complete: number of sides, $\mathrm{n}=$
exterior angle, $\mathrm{e}=\ldots .$. .
interior angle, $\mathrm{i}=$ \qquad
\{You may use the proportional triangle and prime factor tree\}
5. Here is a regular polygon, a proportional triangle and an incomplete prime factor tree.

For the 24 sided polygon, work out:

$$
\begin{aligned}
& \text { exterior angle, } \mathrm{e}=\ldots . .^{\circ} \\
& \text { interior angle, } \mathrm{i}=\ldots . .^{\circ}
\end{aligned}
$$

\{You may use the proportional triangle and prime factor tree\}

Answers

1. (ii) $\mathrm{n}=6, \mathrm{e}=60$ and $\mathrm{i}=120$
2. (ii) $\mathrm{n}=12 \mathrm{e}=30$ and $\mathrm{i}=150$
3. (ii) $\mathrm{n}=5, \mathrm{e}=72$ and $\mathrm{i}=108$
4. (ii) $\mathrm{n}=3$, $\mathrm{e}=120$ and $\mathrm{i}=60$
5. $\mathrm{e}=15$ and $\mathrm{i}=165$
