You will need a scientific calculator with TABLE function and calcGebraSetUp.pdf

1. Follow the instructions on **How to:** set up the calculator for TABLE

Complete:

For the function: f(X) = 2X the *n*th term rule is 2n (this is also called the position to term rule) it makes:

• the sequence: $2 \quad 4 \quad 6 \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \text{with the term to term rule: } + \dots$

2. Follow the instructions on **How to:** edit the TABLE

Complete:

For the function: f(X) = 3X - 2 the *n*th term rule is 3n - 2 (this is also called the position to term rule) it makes:

• the sequence: 1 4 7 \dots \dots \dots \dots with the term to term rule: + \dots

You will need a scientific calculator with TABLE function and calcGebraSetUp.pdf $% \mathcal{A}$

1. Follow the instructions on **How to:** set up the calculator for TABLE

Complete:

For the function: f(X) = 2X the *n*th term rule is 2n (this is also called the position to term rule) it makes:

• the sequence: $2 \quad 4 \quad 6 \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \text{with the term to term rule: } + \dots$

2. Follow the instructions on **How to:** edit the TABLE

Complete:

For the function: f(X) = 3X - 2 the *n*th term rule is 3n - 2 (this is also called the position to term rule) it makes:

• the sequence: 1 4 7 \dots \dots \dots \dots with the term to term rule: + \dots

3. Edit f(X) to find these sequences

(i) For the function: f(X) = 4X, the *n*th term rule is 4n (this is also called the position to term rule) it makes:

• the sequence:		4	8	12						with the term to term rule: +
(ii) For the function:	f(X)	= 2X	ζ-1,	the n th	term	rule is $2r$	n-1 (this	is also	o called	the position to term rule) it makes:
• the sequence:		1	3	5						with the term to term rule: $+ \dots$
(iii) For the function:	f(X)	= 52	X - 3	, the n th	ı term	rule is 5	n-3 (this	s is als	so called	the position to term rule) it makes:
• the sequence:		2	7	12						with the term to term rule: $+ \dots$

3. Edit f(X) to find these sequences

(i) For the function: f(X) = 4X, the *n*th term rule is 4n (this is also called the position to term rule) it makes:

• the sequence	: 4	8	12						with the term to term rule: $+ \dots$
(ii) For the function:	f(X) =	2X - 1	, the nt	h term :	rule is $2n$	t - 1 (this	is is also	called	the position to term rule) it makes:
• the sequence	: 1	3	5						with the term to term rule: +
(iii) For the function:	f(X) =	= 5X - 3	3, the n^{\dagger}	th term	rule is 5 <i>1</i>	n-3 (th	nis is also	o called	the position to term rule) it makes:
• the sequence	: 2	7	12						with the term to term rule: $+ \dots$