
1. On the grid below, translate shape B by the vector $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ and label it C

top left at (4, 3)

FYI: translate in one dimension correctly (M1)

2. The diagram below shows parallelogram ABCD

The diagonals of the parallelogram intersect at O

 $\overrightarrow{OA} = \mathbf{a}$ {Handwriting **bold** is hard to do so mathematicians write $\underline{\mathbf{a}}$ instead of \mathbf{a} }

 $\overrightarrow{OB} = \mathbf{b}$ {and write $\underline{\mathbf{b}}$ instead of \mathbf{b} }

Write an expression, in terms of \mathbf{a} and \mathbf{b} for

(i)
$$\overrightarrow{CA} = \dots$$

(ii)
$$\overrightarrow{DO} = \dots$$

(i) 2a (ii) b

3.
$$\mathbf{a} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$

Work out $2\mathbf{a} + 3\mathbf{b}$ as a column vector.

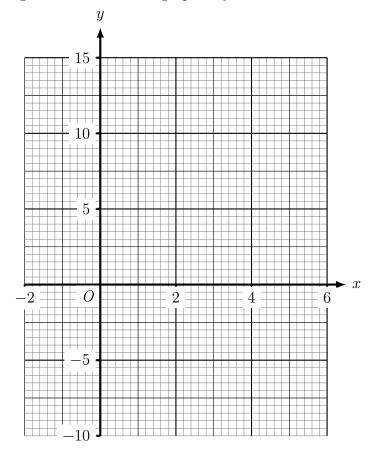
SPACE LEFT 4mm

4. On the grid, draw the line y = 2x + 1, for values of x from -2 to 3.

SPACE LEFT 4cm

Line y = 2x + 1 drawn from (-2, -3) to (3, 7)

FYI: 2 points plotted (M1) and no incorrect (M1) OR correct gradient (M1), correct $y_{intercept}(M1)$ OR line segment of line e.g. $0 \le x \le 3$ (SC2)


5. (a) Complete the table of values for $y = x^2 - 3x - 4$

x	-2	-1	0	1	2	3	4	5	6
y				-6				6	

 $6, 0, -4 \dots -6, -4, 0 \dots 14$

FYI: 2 correct (M1)

(b) On the grid below draw the graph of y = for values of $x^2 - 3x - 4$ from -2 to 6

FYI: 4 points plotted (M1) all points and smooth-ish curve (A1)