

1. On the grid below, translate shape B by the vector $\begin{vmatrix} 4 \\ 3 \end{vmatrix}$ and label it C

2. The diagram below shows parallelogram ABCD

The diagonals of the parallelogram intersect at O

 $\overrightarrow{OA} = \mathbf{a}$ {Handwriting **bold** is hard to do so mathematicians write $\underline{\mathbf{a}}$ instead of \mathbf{a} }

 $\overrightarrow{OB} = \mathbf{b} \quad \{\text{and write } \underline{\mathbf{b}} \text{ instead of } \mathbf{b}\}\$

Write an expression, in terms of \mathbf{a} and \mathbf{b} for

(i) $\overrightarrow{CA} = \dots$ (ii) $\overrightarrow{DO} = \dots$

 $\begin{array}{ccc} 3. & \mathbf{a} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} & \mathbf{b} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$

Work out $2\mathbf{a} + 3\mathbf{b}$ as a column vector.

4. On the grid, draw the line y = 2x + 1, for values of x from -2 to 3.

(.....)

										_
x	-2	-1	0	1	2	3	4	5	6	
y				-6				6		
(b) On	the grid	l below	draw the y	e graph	of $y = fo$	or values	s of x^2 –	-3x - 4	from -2	to

x

6

10

5

0

-5

-10

2

4