Ordered strictly alphabetically

- p2 10bond,
- p2 base10add,
- p2 base10skills,
- p3 beginDIVfacts,
- p3 beginXfacts,
- p3 B^i DMAS,
- p4 correctTOnearest,
- p4 factor,
- p5 givenADDsign,
- p6 givenDIVsign,
- $\mathbf{p7}$ given SUBsign,
- p8 givenXsign
- p9 improveDIV facts,
- p9 improveXfacts,
- p10 multiple,
- p10 negative,
- p11 numberX10etc,
- p11 orderInteger,
- p12 place0Value99,
- p12 place100Value999,
- p13 placeValue10000up,
- p13 prime,
- p14 sequenceMultiple

10bond

- 9. solve \star + Ones = T0 or Ones + \star = T0
- 8. scaffold to calculate Ones + \star = T0 scaffold is count on method, traditional columns and block diagram
- 5. solve \star + Ones = 10 or Ones + \star = 10
- 4. scaffold to solve \star + Ones = 10 scaffold is fingers or boxes
- 3. scaffold to solve Ones $+ \star = 10$ scaffold is fingers or boxes
- 2. complete Ones $+\ldots = 10$
- 1. scaffold to complete Ones $+ \ldots = 10$ scaffold is fingers on pair of hands

base10add

- 10. complete e.g. 36 46 56 66 ..., \dots , \dots {never past 100}
- 9. complete e.g. 16 26 36 $\ldots,\ \ldots,\ \ldots$
- 8. scaffold to complete e.g. 16 26 36 ..., ..., ... scaffold is pictures
- 7. scaffold to complete e.g. 6 16 26 36 ..., ..., ... scaffold is incomplete 100 square and pictures
- 5. count e.g. 64 shaded squares in a 100 square {shaded vertically or horizontally}
- 4. **scaffold to** count e.g. 64 shaded squares in a 100 square **scaffold is** 1 to 10 and 20 written in appropriate squares
- 3. scaffold to complete the multiples of 10 scaffold is all other squares numbered
- 2. complete the missing numbers e.g. 6 7 8 \dots , \dots , \dots {always past 10}
- 1. complete the missing numbers e.g. 5 6 7 \dots , \dots , \dots {never past 10}

base10skills

- 10. work out e.g. $\{2 \text{ or } 20 \text{ or } 200\} \times \{50 \text{ or } 500\}$ or v.v. $\{\text{harder because } 2 \times 5 \text{ ends in } 0\}$
- 8. work out e.g. $\{20 \text{ or } 200\} \times \{80 \text{ or } 800\} \{\text{NOT e.g. } 20 \times 500 \text{ because } 2 \times 5 \text{ ends in } 0\}$
- 6. work out e.g. $2 \times \{800 \text{ or } 8000\}$ or v.v. {NOT e.g. 2×500 because 2×5 ends in 0}
- 4. work out e.g. 2×80 or v.v. {NOT e.g. 2×50 because 2×5 ends in 0}
- 2. scaffold to work out 70×6 or 7×60 scaffold is told $7 \times 6 = 42$

beginDIVfacts

- 14. square root of $\{100, 4 \text{ and } 1\}$
- 12. given \div Ones = 10
- 11. Ones $\div 1 = \text{Ones}$
- 10. given $\div 2 = \{6, 7, 8, 9\}$
- 8. given $\div 9 = \{2 \text{ to } 9\}$
- 7. scaffold to find \div 9 facts scaffold is guided to use fingers trick
- 6. given $\div 5 = \{2 \text{ to } 9\}$
- 5. scaffold to find \div 5 facts scaffold is guided to use fingers and place value
- 4. given \div Ones = 1
- 2. given $\div 2 = \{2, 3, 4, 5\}$

beginXfacts

- 14. write down the value of 2^2 , 5^2 , 9^2 or 10^2
- 13. $\{1 \text{ to } 10\} \times 1 \text{ and v.v.}$
- 11. $\{6 \text{ to } 8\} \times 2 \text{ and v.v.}$
- 9. $\{2 \text{ to } 9\} \times 9 \text{ and v.v.}$
- 8. scaffold to find $\{2 \text{ to } 9\} \times 9$ scaffold is example of fingers trick
- 7. $\{3 \text{ to } 8\} \times 5 \text{ and v.v.}$
- 5. scaffold to work out Ones \times 5 scaffold is use fingers and place value
- 4. $\{2 \text{ to } 10\} \times 10 \text{ and } \{2 \text{ to } 5\} \times 2 \text{ and v.v.}$
- 3. scaffold to write $\{2, 3, 4, 5, 6, 7, 8, 9, 10\} \times 10$ or v.v. scaffold is diagram

$B^i DMAS$

- 6. work out calculations of the form $a \pm b \times c$ or $a \pm b \div c$
- 4. work out calculations of the form $a \div (b \pm c)$ or $a (b \pm c)$
- 2. Name says e.g. $3 \times 3 \times 3 \times 3$ is 4^3 Is Name correct? explain
- 1. Name says the value of e.g. 3^2 is 6 {or 9} Is Name correct? explain

correctTOnearest

- 16. Write e.g. $5\,308\,738$ or $5\,308\,378$ correct to the nearest 1000
- 15. Write e.g. 5738 or 5783 correct to the nearest 100
- 13. Write e.g. 1823.54 or 1823.45 correct to the nearest integer
- 12. scaffold to Write decimal correct to nearest integer scaffold is given LB (lower bound) and clue re which digit is decider
- 11. Write e.g. 4937 or 4973 correct to the nearest 10
- 10. **scaffold to** write number to the nerest 10 **scaffold is** given LB (lower bound) and clue which digit is decider
- 7. Write e.g. 25 correct to the nearest 10
- 6. Write e.g. 24 or 26 etc correct to the nearest 10
- 5. **scaffold to** Understand why 5 rounds up **scaffold is** circle the 5 forty something and the 5 fifty something numbers which are 50 correct to the nearest 10
- 4. scaffold to complete e.g. 26 correct to the nearest $10 = \dots$ scaffold is write the two multiples of 10 closest to 26 on incomplete number line
- 3. scaffold to complete e.g. 26 correct to the nearest $10 = \dots$ scaffold is incomplete 100 square or number line and $20 + \dots = 26$ and $26 + \dots = 30$
- 2. scaffold to complete e.g. $20 + \ldots = 26$ and $26 + \ldots = 30$ scaffold is incomplete 100 square or number line
- 1. **scaffold to** count on from e.g. 3 and stop at 10 **scaffold is** Name models counting on from e.g. 26 to 30 in part of 100 square

factor

- 7. write down all factor pairs of e.g. $20\,$
- 6. scaffold to write down all factor pairs of e.g. 60 scaffold is prime factor tree of 60
- 5. **scaffold to** write down all factor pairs of e.g. 24 **scaffold is** factor finding method with hints
- 4. scaffold to write down some factor pairs of e.g. 32 scaffold is doubling and halving trick
- 3. write down a factor pair of e.g. 24
- 2. scaffold to write down all the factor pairs of e.g. 32 scaffold is multiplication grid and given $2 \times 16 = 32$ {i.e. not found in multiplication grid}
- 1. scaffold to write down all the factor pairs of e.g. 18 scaffold is multiplication grid, where every 18 is highlighted and given $1 \times 18 = 18$

givenADDsign

- 15. work out TO + TO {ones carry} e.g. 34 + 49
- 14. scaffold to work out TO + TO e.g. 34 + 49 {ones carry} scaffold is (a) partition, order and count on (b) columns (c) partitioning with 10 carry clue
- 13. work out TO + TO e.g. 34 + 45 {no carry}
- 12. scaffold to work out TO + TO e.g. 34 + 45 {no carry} scaffold is (a) partition, order and count on (b) columns (c) traditional partitioning
- 11. work out TO + multiple of 10 e.g. 34 + 40 {never over 100}
- 10. scaffold to work out TO + multiple of 10 e.g. 34 + 40 {no carry} scaffold is (a) partition, order and count on (b) columns (c) traditional partitioning
- 9. work out multiple of 10 + multiple of $10 \text{ e.g. } 30 + 40 \text{ {never over } 100 {}}$
- 8. scaffold to work out multiple of 10 + multiple of 10 e.g. 30 + 40 scaffold is (a) partition, order and count on (b) columns (c) traditional partitioning
- 7. work out TO + O e.g. 34 + 9 {may cross 10s boundary}
- 6. scaffold to work out TO + O scaffold is TO in a speech bubble and O fingers {crossing 10s boundary}
- 5. scaffold to work out TO + O scaffold is TO in a speech bubble and O fingers {NOTcrossing 10s boundary}
- 4. work out $O_{big} + O_{small}$
- 3. scaffold to work out $O_{big} + O_{small}$ scaffold is "big" in a speech bubble and "small" fingers
- 2. scaffold to work out $O + O \{\text{total} > 10\}$ scaffold is items in picture
- 1. scaffold to work out $O + O \{ \text{total} \leq 10 \}$ scaffold is items in picture

givenDIVsign

- 13. work out given $\div TO_1 = TO_2$ (slightly easier because all digits are 1, 2, 4, 5 or 8)
- 12. work out given $\div O_1 = TO_2$: harder because O_1 and T are rarely 1, 2, 4, 5 or 8
- 11. work out given $\div O_1 = TO_2$: slightly easier because T is 2, 4, 5 or 8, however O_1 is not
- 10. scaffold to work out e.g. $581 \div 7 = 83$ scaffold is given the 7 times table rows with gaps $\{1, 2, \text{gap}, 4, 5, \text{gap}, \text{gap}, 8, \text{gap}, 10\}$
- 9. scaffold to work out 24 ÷ 3 scaffold is complete prime factor tree {to help with dividing by 3, 5, 7, 11, 13}
- 8. scaffold to write easy to work out multiples of O and TO scaffold is doubling method for $\{2, 4, 8\}$, $\times 10$ and then $\div 2$ for $\{10, 5\}$
- 7. scaffold to work out e.g. $56 \div 7 = 8$, $85 \div 17 = 5$ {by look up} and $98 \div 7 = 14$, $680 \div 17 = 40$ {by adjust} scaffold is given the 7 and 17 times table rows with gaps {1, 2, gap, 4, 5, gap, gap, 8, gap, 10}
- 6. scaffold to work out e.g. $228 \div 6 = 38$, scaffold is given the 6 times table row and help with finding the tens digit of the answer
- 5. scaffold to e.g. $24 \div 3 = 8$ scaffold is given multiplication square
- 4. scaffold to e.g. $24 \div 3 = 8$ scaffold is example to complete writing out multiples of 3
- 3. scaffold to e.g. $24 \div 3 = 4$ given multiplication square scaffold is complete sharing into boxes and looking up in grid
- 2. scaffold to work out e.g. $12 \div 3 = 4$ scaffold is example showing sharing into boxes
- 1. scaffold to work out e.g. $14 \div 2$ or $\frac{1}{2}$ of 14 {answer 1 to 9} scaffold is example pictures with dots and told $\div 2$ and $\frac{1}{2}$ are ways of writing half

givenSUBsign

- 14. work out TO o e.g. 76 4 {no borrow}
- 13. scaffold to work out TO o e.g. 76 4 {no borrow} scaffold is count on method, traditional columns and block diagram
- 12. work out To- tO e.g. 74 46 {i.e. borrow}
- 11. scaffold to work out To- tO e.g. 74 46 {i.e. borrow} scaffold is count on method, traditional columns and block diagram
- 10. work out TO to e.g. 76 43 {no borrow}
- 9. scaffold to work out TO to e.g. 76 43 {no borrow} scaffold is count on method, traditional columns and block diagram
- 8. work out TO multiple of 10 e.g. 76 40 $\,$
- 7. scaffold to work out TO multiple of 10 e.g. 76 40 scaffold is count on method, traditional columns and block diagram
- 6. work out multiple 10 multiple of 10 e.g. 70 40 $\,$
- 5. scaffold to work out multiple 10 multiple of 10 e.g. 70 40 scaffold is count on method, traditional columns and block diagram
- 4. work out $Ones_{big}$ $Ones_{small}$
- 3. scaffold to work out $Ones_{big}$ $Ones_{small}$ scaffold is ticks above horizontal line
- 2. scaffold to work out Ones_{big} Ones_{small} scaffold is ticks above horizontal line paired with crosses below
- 1. scaffold to work out $Ones_{big}$ $Ones_{small}$ scaffold is picture with counters crossed out

given Xsign

- 10. work out TO \times TO
- 9. scaffold to work out TO \times TO scaffold is given i/c multiplication square {beginXfacts are missing} and i/c partitioning
- 8. scaffold to work out HTO/TO × TO scaffold is given i/c multiplication square {beginXfacts are missing} and i/c Gelosia {Gelosia carry IS required}
- 7. work out TO \times Ones
- 6. scaffold to work out TO × Ones scaffold is given i/c Gelosia and partitioning and the Ones row from a mutiplication square {Gelosia carry IS required}
- 5. scaffold to work out HTO/TO × TO scaffold is given i/c multiplication square {beginXfacts are missing} and i/c Gelosia {Gelosia carry NOT required}
- 4. scaffold to work out Teen × Ones scaffold is given i/c Gelosia and partitioning and the Ones row from a multiplication square {Gelosia carry NOT required}
- 3. work out Ones \times Ones given multiplication square
- 2. scaffold to work out Ones \times Ones given multiplication square scaffold is guided 2 ways to count squares and link to numbers in row/column of multiplication square
- 1. scaffold to work out Ones \times Ones scaffold is dots in rectangle {counting OK}

improveDIVfacts

- 14. square root of 49
- 13. given \div 7 = {3, 6, 7} (product of prime factor does NOT help)
- 12. given $\div 3 = \{3, 5, 7\}$ and given $\div 6 = 7$ (product of prime factor does NOT help)
- 11. square root of 16, 36 and 64
- 10. square root of 9, 25 and 81 $\,$
- 9. given \div 7 = {4, 5, 8, 9} (use product of prime factor)
- 8. given $\div 6 = \{3, 4, 5, 6, 8, 9\}$ (use product of prime factor)
- 7. given $\div 3 = \{4, 6, 8, 9\}$ (use product of prime factor)
- 6. given $\div 8 = \{4, 7, 8, 9\}$ (harder: half, half and half again)
- 5. given $\div 4 = \{4, 8, 9\}$ (harder: half and half again)
- 4. given $\div 8 = \{3, 5, 6\}$ (easier: half, half and half again)
- 3. given $\div 4 = \{3, 5, 6, 7\}$ (easier: half and half again)
- 2. scaffold to use \div facts to derive others scaffold is e.g. $56 \div 2 \rightarrow 56 \div 4 \rightarrow 56 \div 8$
- 1. given \div {3, 4, 6, 7, 8} = 2

improveXfacts

- 11. write down 1^2 , 3^2 or 7^2
- 10. write down $\{6, 7\} \times \{6, 7\}$
- 9. scaffold to write down 7 × {3, 6, 7} scaffold is e.g. $1 \times 6 + 2 \times 6 + 4 \times 6$
- 8. write down $3 \times \{3, 6, 7\}$ and v.v.
- 7. scaffold to write down $3 \times \{3, 6, 7\}$ scaffold is choice of 2 long winded ways to calculate
- 5. scaffold to write down 4^2 , 6^2 or 8^2 scaffold is long winded use of product of prime factor
- 4. write down $\{4, 8\} \times \{6, 7, 8\}$ and v.v.
- 3. scaffold to write down $\{4, 8\} \times \{6, 7, 8\}$ scaffold is doubling and doubling (and doubling)
- 2. write down $\{4, 8\} \times \{3, 4\}$ and v.v.
- 1. scaffold to write down $\{4, 8\} \times \{3, 4\}$ scaffold is doubling and doubling (and doubling)

multiple

- 10. find LCM (lowest common multiple) of 3 numbers
- 9. find LCM (lowest common multiple) of 2 numbers
- 6. **scaffold to** find LCM (lowest common multiple) of 2 numbers e.g. 6 and 8 OR 6 and 20 **scaffold is** guided method with some lists of multiples
- 5. recall and use the word **multiple**
- 4. **scaffold to** recognise multiples of Ones and state e.g. the 8th multiple of the One **scaffold** is table and incomplete multiplication grid
- 3. scaffold to write down the multiples of Ones and state next multiple scaffold is pictures of dots in rectangle and multiplication grid
- 2. scaffold to write down the multiples of {2 or 5} scaffold is pictures of dots in rectangle
- 1. scaffold to add some multiples of 10 to an incomplete 100 square and multiplication grid scaffold is given pictures or ruler

negative

- 15. negative negative e.g. -5 -7
- 14. non-negative negative e.g. 12 -7
- 12. negative \div integer e.g. $-35\div 5$ or $-35\div -5$
- 11. non-negative \div negative e.g. $35 \div -5$
- 10. negative \times negative e.g. -5×-7
- 9. negative \times non-negative e.g -5×7 or 5×-7
- 7. negative + negative e.g. -5 + -7
- 5. negative + non-negative e.g. 5 + 7 or 12 + 7
- 4. e.g. 9 12 {answer always negative}
- 3. scaffold to work out e.g. 3 9 or -9 + 3 or -3 + 9 scaffold is given ticks above and crosses below horizontal line
- 2. order a mix of positive and negative numbers
- 1. read negative number off thermometer or number line {all negative labels missing}

number X10 etc

- 14. work out e.g. $0.00123 \times \{10 \text{ or } 100 \text{ or } 1000\} \{\text{DELETE leading } 0s\}$
- 12. work out (as complex as) HTO.th \times {100 or 1000} {decimal point given, ADD trailing 0s}
- 10. work out (as complex as) HTO.th \times 10 {decimal point given, NO need to add trailing 0s}
- 8. work out {O or TO or HTO} \times {100 or 1000} or v.v.
- 7. work out {T0 or H00} \times 10 or v.v.
- 5. scaffold to work out {Ones or TO but NOT T0} \times {10 then 100 then 1000} scaffold is place value grid
- 4. work out {TO or HTO} \times 10 or v.v. {but NOT {20 or 200 or 207 or 270} \times 10}
- 3. scaffold to work out {TO or HTO} × 10 scaffold is place value grid {no 0s in middle/end e.g. NOT {20 or 200 or 207 or 270} × 10}
- 2. work out Ones \times 10
- 1. scaffold to work out Ones \times 10 scaffold is fingers to count in 10s

orderInteger

- 9. use of $< or = or > sign e.g. 808 \dots 880$
- 8. order list of 2 and 3 or 3 and 4 digit numbers {values represent e.g. length}
- 6. order list of 2 digit numbers {values represent e.g. length}
- 4. order a mix of numbers e.g. 9, 13, 27, 34, 62 etc {maximum one number with each T value}
- 3. order a mix of numbers e.g. 9, 10, 19, 20, 29 Start with the smallest {to help with crossing 10s boundary when counting}
- 2. write these numbers in order {numbers up to 10} Start with the smallest.
- 1. select the largest or smallest number from a list {numbers up to $10\}$

place0value99

- 12. give the value of e.g. 4 in 46 or 7 in 17
- 11. scaffold to give the value of e.g. 4 in 46 or 7 in 17 scaffold is given empty place value grid
- 10. write e.g. 11 in words and thirteen in digits
- 9. complete a place value grid e.g. write 11 in words and thirteen in digits
- 8. write teens, from eleven to nineteen, in words
- 7. scaffold to write teen numbers in words {not 11 or 12} scaffold is complete a table with some examples e.g. six and 6 + 10 = 16 and sixteen
- 6. write TO in digits, given words e.g. fifty eight
- 5. complete a place value grid for TO, given e.g. write fifty eight in digits and 35 in words {no teens}
- 4. write the multiples of 10, from twenty to ninety, in words
- 3. scaffold to write the multiples of 10, from twenty to ninety in words scaffold is complete a table with some examples e.g. six and $6 \times 10 = 60$ and sixty
- 2. tick e.g. 5 written as a word {from a selection of Ones}
- 1. tick e.g. five written as a number {from a selection of Ones}

place100value9999

- 12. write the value of the digit e.g. 6 in 567 or 4567 or 4567 or {i.e. T }
- 11. write the value of the digit e.g. 5 in 567 or 5678 or 4567 or {i.e. H or Th}
- 10. write HTO or ThHTO {given in word} as digits {some middle digits are zero}
- 9. write ThHTO {given in words, no digits are zero} as digits OR {given in digits, some digits may be zero} as words
- 8. write HTO or ThHTO {given in words} in place value grid {some middle digits are zero}
- 7. write ThHTO {given in digits} in words {no digits are zero}
- 6. write ThHTO {given in words} in place value grid {no digits are zero}
- 5. write Th HTO {given in digits} in place value grid and write down the value of Th H or T {no digits are zero}
- 4. write HTO {given in digits} in words {no digits are zero}
- 3. write HTO {given in words} in place value grid {no digits are zero}
- 2. write HTO {given in digits} in place value grid and write down the value of H or T {no digits are zero}
- 1. complete a place value table given H00 written in words and v.v.

placeValue10000up

- 3. scaffold to write, up to 12 digit, numbers in words scaffold is correcting incorrectly labelled place value grids or inserting labels thousand, million, billion from the right
- 2. given HTOthousand HTO in place value grid, write in words (no 0?s)
- 1. write HTOthousand HTO given in words into place value grid (no 0?s)

prime

- 14. write {harder number} as a product of is prime factors {must divide by 3, 7, 11, 13 etc}
- 12. write down the list of primes from 1 to $20\,$
- 11. scaffold to learn the list of primes from 11 to 20 scaffold is draw prime factor trees of non-primes
- 10. scaffold to learn the list of primes from 1 to 10 scaffold is draw prime factor trees of non-primes, complete explanation about why 1 is not prime
- 9. find HCF and LCM of 2 numbers given each as a product of power of prime factors
- 8. find the HCF {highest common factor} of e.g. 44 and 60
- 7. write e.g 330 as a product of is prime factors {only \div 2, 5, 9 or 10 and \div 3 up to 33}
- 6. write e.g 180 as a product of is prime factors {only \div 2, 9 or 10 and 9 = 3 × 3}
- 5. write e.g. 200 as a product of its prime factors {only \div 10 and $10 = 2 \times 5$ }
- 4. scaffold to complete prime factor tree e.g. 180 {only ÷ 2, 9 or 10 and 9 = 3 × 3} scaffold is some 2s, 9s and 10s given in incomplete tree
- 3. scaffold to complete prime factor tree e.g. 400 {only ÷ 2 or 10} scaffold is some 2s and 10s given in incomplete tree
- 2. scaffold to complete prime factor tree e.g. 200 {only \div 10 and 10 = 2 × 5} scaffold is 10s given in incomplete tree
- 1. **scaffold to** write e.g. 24 as a product of its prime factors **scaffold is** prime factor tree of 24

sequenceMultiple

- 7. scaffold to write list of multiples of 2 starting at T0 {cross 100s boundary} scaffold is place value clues
- 6. scaffold to write list of multiples of 5 starting at T0 scaffold is place value clues
- 5. scaffold to write list of multiples of 2 starting at T0 scaffold is place value clues
- 4. scaffold to write list of multiples of 5 starting at 0 scaffold is place value clues
- 3. scaffold to count number of squares shaded in 100 square {only T0} scaffold is hint to use multiples of 10
- 2. scaffold to write list of multiples of 10 starting at 0 scaffold is place value clues
- 1. scaffold to write list of multiples of 2 starting at 0 scaffold is place value clues