1. The formula $\quad v=f \lambda \quad$ can be used to calculate the wave speed, $v \mathrm{~m} / \mathrm{s}$, of a wave with a frequency, $f \mathrm{~Hz}$, and wavelength $\lambda \mathrm{m}$.
\{FYI v is the velocity or speed of the wave. The unit Hz is read a bit like "hurts".\}
Calculate the speed of a wave with a frequency of 50 Hz and a wavelength of 6 m .

$$
\mathrm{m} / \mathrm{s}
$$

2. The mass of an aluminium window frame is 2700 g and it's volume is $1000 \mathrm{~cm}^{3}$

Work out the density of the aluminium.

$$
\ldots \ldots g \mathrm{~g} / \mathrm{cm}^{3}
$$

proportionalFormulaNC (7) Q1: 300; Q2: 2.7; Q3: 600; Q4: 0.02

1. The formula $\quad v=f \lambda \quad$ can be used to calculate the wave speed, $v \mathrm{~m} / \mathrm{s}$, of a wave with a frequency, $f \mathrm{~Hz}$, and wavelength $\lambda \mathrm{m}$.
\{FYI v is the velocity or speed of the wave. The unit Hz is read a bit like "hurts".\}
Calculate the speed of a wave with a frequency of 50 Hz and a wavelength of 6 m .

$$
\mathrm{m} / \mathrm{s}
$$

2. The mass of an aluminium window frame is 2700 g and it's volume is $1000 \mathrm{~cm}^{3}$

Work out the density of the aluminium.
3. A ship travels for 30 hours at an average speed of 20 mph

Work out the distance that this ship travels.
............... miles
4. The formula $F=k e \quad$ is called Hooke's Law. It calculates the force, $F \mathrm{~N}$, to extend a spring by an extension, $e \mathrm{~m}$, when the spring constant is $k \mathrm{~N} / \mathrm{m}$.
Work out the extension of the spring when a force of 200 N is applied to a spring with a spring constant of $10000 \mathrm{~N} / \mathrm{m}$.
3. A ship travels for 30 hours at an average speed of 20 mph

Work out the distance that this ship travels.
miles
4. The formula $F=k e \quad$ is called Hooke's Law. It calculates the force, $F \mathrm{~N}$, to extend a spring by an extension, $e \mathrm{~m}$, when the spring constant is $k \mathrm{~N} / \mathrm{m}$.
Work out the extension of the spring when a force of 200 N is applied to a spring with a spring constant of $10000 \mathrm{~N} / \mathrm{m}$.

