1. The diagram below shows 9 congruent triangles.

 $\overrightarrow{OP}=\mathbf{p}$ $\{ \text{Handwriting } \mathbf{bold} \text{ is hard to do so mathematicians write } \underline{p} \text{ instead of } \mathbf{p} \}$ $\{and write \underline{q} instead of \mathbf{q}\}\$

Find in terms of \mathbf{p} and \mathbf{q} the vectors

(i)
$$\overrightarrow{QX} = \dots$$

(i)
$$\overrightarrow{QX} = \dots$$
 (ii) $\overrightarrow{RU} = \dots$

2. The diagram below shows regular hexagon OBCDEF

 $\overrightarrow{OA} = \mathbf{a}$ {Handwriting **bold** is hard to do so mathematicians write $\underline{\mathbf{a}}$ instead of \mathbf{a} } $\overrightarrow{OE} = \mathbf{e}$ $\{$ and write $\underline{\mathbf{e}}$ instead of $\mathbf{e}\}$

Write an expression, in terms of \mathbf{a} and \mathbf{b} for

(i)
$$\overrightarrow{AD} = \dots$$

(i)
$$\overrightarrow{AD} = \dots$$
 (ii) $\overrightarrow{FB} = \dots$

3. The diagram below shows 12 congruent parallelograms.

 $\overrightarrow{OA} = \mathbf{a}$ {Handwriting **bold** is hard to do so mathematicians write $\underline{\mathbf{a}}$ instead of \mathbf{a} } $\overrightarrow{OB} = \mathbf{d}$ $\{$ and write $\underline{\mathbf{d}}$ instead of $\mathbf{d}\}$

Find in terms of \mathbf{a} and \mathbf{d} the vectors

(i)
$$\overrightarrow{AC} = \dots$$

(i)
$$\overrightarrow{AC} = \dots$$
 (ii) $\overrightarrow{GU} = \dots$

Answers

- 1. (i) 2q (ii) p
- $2.\,$ (i) 2e (ii) a
- $3.\ (i)$ 2a (ii) 3d