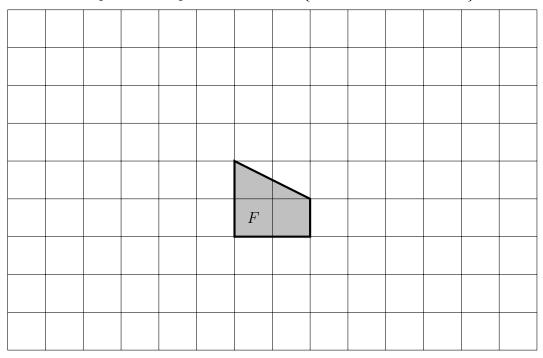
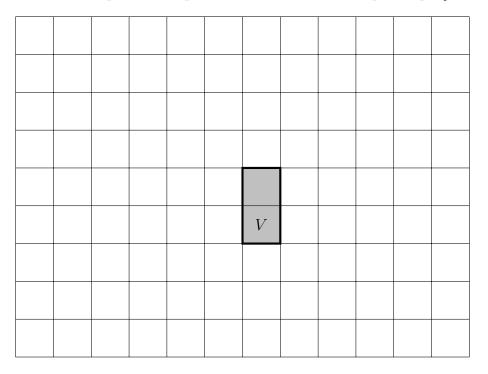
1. Translate shape F four squares to the left. {translate in 1 direction}



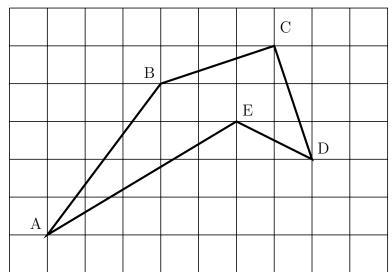
2. Translate shape V two squares to the left and one square up. {translate in 2 directions}



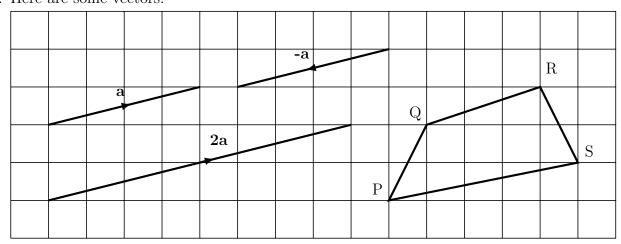
3. not written yet

4. ABCDE is an irregular pentagon.

Write down the vector \overrightarrow{AB}



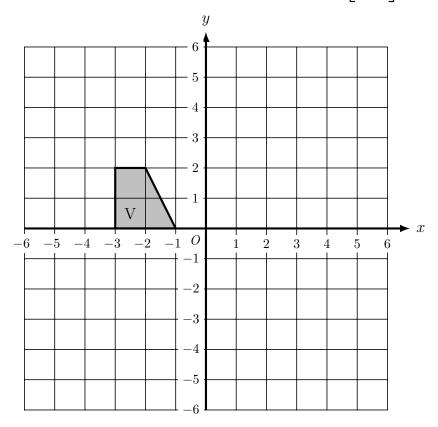
- $\overrightarrow{AB} = \left(\begin{array}{c} \dots \\ \dots \end{array}\right)$
- 5. not. written yet
- 6. Here are some vectors.



Write down the column vectors for

(i)
$$\mathbf{a} = \begin{pmatrix} & \\ & \end{pmatrix}$$
 (ii) $-\mathbf{a} = \begin{pmatrix} & \\ & \end{pmatrix}$ (iii) $\mathbf{2a} = \begin{pmatrix} & \\ & \end{pmatrix}$

7. On the grid below, translate trapezium V by the vector $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and label it W

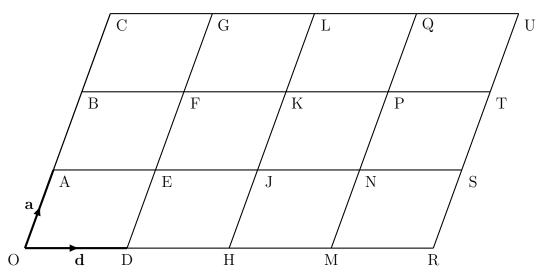


8.
$$\mathbf{p} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$
 $\mathbf{q} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$

Complete these column vectors

(i)
$$2\mathbf{p} = \left(\dots \right)$$
 (ii) $3\mathbf{q} = \left(\dots \right)$

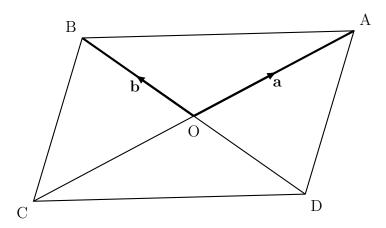
9. (a) The diagram below shows 12 congruent parallelograms.



 $\overrightarrow{OA} = \mathbf{a}$ {Handwriting **bold** is hard to do so mathematicians write $\underline{\mathbf{a}}$ instead of \mathbf{a} } $\overrightarrow{OB} = \mathbf{d}$ {and write $\underline{\mathbf{d}}$ instead of \mathbf{d} }

Find in terms of a and d the vectors

- (i) $\overrightarrow{AC} = \dots$ (ii) $\overrightarrow{GU} = \dots$
- (b) The diagram below shows parallelogram ABCD



The diagonals of the parallelogram intersect at O

 $\overrightarrow{OA} = \mathbf{a}$ {Handwriting **bold** is hard to do so mathematicians write $\underline{\mathbf{a}}$ instead of \mathbf{a} } $\overrightarrow{OB} = \mathbf{b}$ {and write $\underline{\mathbf{b}}$ instead of \mathbf{b} }

Write an expression, in terms of ${\bf a}$ and ${\bf b}$ for

(i)
$$\overrightarrow{CO} = \dots$$
 (ii) $\overrightarrow{DB} = \dots$

10.
$$\mathbf{a} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$

Work out $\mathbf{a} + \mathbf{b}$ as a column vector.

11.
$$\mathbf{a} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$

Work out $3\mathbf{a} + 2\mathbf{b}$ as a column vector.