1. Translate shape F four squares to the left. \{translate in one direction $2 / 3 / 4 /$ left/right/up/down $\}$

2. Translate shape V two squares to the left and one square up.

						V					

3.
4. ABCDEF is an irregular hexagon.

Write down the vector $\overrightarrow{A B}$

5.
5. not. written yet
6. Here are some vectors.

Write down the column vectors for
(i) $\mathbf{a}=(\quad)$
(ii) $\mathbf{- a}=(\quad)$
(iii) $\mathbf{2 b}=(\quad)$
(iv) $\overrightarrow{S R}=($
7. On the grid below, translate trapezium V by the vector $\left[\begin{array}{r}2 \\ -1\end{array}\right]$ and label it W

8.
$\mathbf{p}=\binom{5}{-3}$
$\mathbf{q}=\binom{-2}{1}$

Complete these column vectors
(i) $2 \mathbf{p}=\binom{\ldots}{\ldots}$
(ii) $3 \mathbf{q}=\binom{\ldots \ldots}{\ldots \ldots}$
9. (a) The diagram below shows 12 congruent parallelograms.

$\overrightarrow{O A}=\mathbf{a} \quad\{$ Handwriting bold is hard to do so mathematicians write a instead of a $\}$
$\overrightarrow{O B}=\mathbf{d} \quad\{$ and write \underline{d} instead of $\mathbf{d}\}$
Find in terms of a and d the vectors
(i) $\overrightarrow{A C}=$ \qquad (ii) $\overrightarrow{G U}=$ \qquad
(b) The diagram below shows parallelogram ABCD

The diagonals of the parallelogram intersect at O
$\overrightarrow{O A}=\mathbf{a} \quad\{$ Handwriting bold is hard to do so mathematicians write a instead of $\mathbf{a}\}$ $\overrightarrow{O B}=\mathbf{b} \quad\{$ and write $\underline{\mathbf{b}}$ instead of $\mathbf{b}\}$

Write an expression, in terms of \mathbf{a} and \mathbf{b} for
(i) $\overrightarrow{C O}=$ \qquad (ii) $\overrightarrow{D B}=$
\qquad
10.
$\mathbf{a}=\binom{-2}{-1} \quad \mathbf{b}=\binom{3}{-4}$

Work out $\mathbf{a}+\mathbf{b}$ as a column vector.

$$
\binom{\ldots}{\ldots}
$$

11.

$$
\mathbf{a}=\binom{2}{-1} \quad \mathbf{b}=\binom{-2}{3}
$$

Work out $3 \mathbf{a}+2 \mathbf{b}$ as a column vector.

