1. Here are some vectors.

(a) Complete these column vectors from the diagram.
(i) $\mathbf{a}=\left(\begin{array}{l}\ldots \\ \ldots \\ \ldots\end{array}\right)$
(ii) $\mathbf{b}=\binom{\ldots}{\ldots}$.
(iii) $2 \mathbf{a}+3 \mathbf{b}=\binom{\ldots .}{.\ldots .}$.

To work out $2 \mathbf{a}+3 \mathbf{b}$ write down (iv) $\mathbf{2 a}=\binom{\ldots \ldots}{\ldots \ldots}$ and (v) $\mathbf{3} \mathbf{b}=\binom{\ldots .}{.\ldots .}$.
(b) Check that working out $2 \mathbf{a}+3 \mathbf{b}$ gives the same vector as (iii)

1. Here are some vectors.

(a) Complete these column vectors from the diagram.
(i) $\mathbf{a}=\binom{\ldots .}{.\ldots .}$.
(ii) $\mathbf{b}=\left(\begin{array}{c}\ldots \\ \ldots \\ \ldots .\end{array}\right)$
(iii) $2 \mathbf{a}+3 \mathbf{b}=\binom{\ldots .}{.\ldots .}$.

To work out $2 \mathbf{a}+3 \mathbf{b}$ write down (iv) $\mathbf{2 a}=\binom{\ldots .}{.\ldots .}$. and (v) $\mathbf{3} \mathbf{b}=\binom{\ldots}{\ldots .}$.
(b) Check that working out $2 \mathbf{a}+3 \mathbf{b}$ gives the same vector as (iii)
2.
$\mathbf{a}=\binom{3}{-1}$
$\mathbf{b}=\binom{-2}{4}$

Work out $2 \mathbf{a}+\mathbf{b}$ as a column vector.

$$
\binom{\ldots . .}{\ldots . .}
$$

3.

$$
\mathbf{a}=\binom{-2}{-1} \quad \mathbf{b}=\binom{3}{2}
$$

Work out $3 \mathbf{a}+2 \mathbf{b}$ as a column vector.

$$
\binom{\ldots . .}{\ldots . .}
$$

translate and vector (11) answers
1 (a)(i) $\binom{2}{-3}$
(ii) $\binom{2}{1}$
(iii) $\binom{10}{-3}$
(iv) $\binom{4}{-6}$
(v) $\binom{6}{3} 2 \cdot\binom{4}{2} 3 \cdot\binom{0}{1}$
2.
$\mathbf{a}=\binom{3}{-1} \quad \mathbf{b}=\binom{-2}{4}$
Work out $2 \mathbf{a}+\mathbf{b}$ as a column vector.

$$
\binom{\ldots .}{\ldots . .}
$$

3.

$\mathbf{a}=\binom{-2}{-1} \quad \mathbf{b}=\binom{3}{2}$
Work out $3 \mathbf{a}+2 \mathbf{b}$ as a column vector.

$$
\binom{\ldots . .}{\ldots . .}
$$

translate and vector (11) answers
1 (a)(i) $\binom{2}{-3}$
(ii) $\binom{2}{1}$
(iii) $\binom{10}{-3}$
(iv) $\binom{4}{-6}$
(v) $\binom{6}{3} 2 \cdot\binom{4}{2} 3 \cdot\binom{0}{1}$

